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Abstract— In this paper, we present a synthesis pipeline and
dataset for training / testing data in the task of traffic sign
recognition that combines the advantages of data-driven and
analytical modeling: GAN-based texture generation enables
data-driven dirt and wear artifacts, rendering unique and
realistic traffic sign surfaces, while the analytical scene modu-
lation achieves physically correct lighting and allows detailed
parameterization. In particular, the latter opens up applications
in the context of explainable AI (XAI) and robustness tests
due to the possibility of evaluating the sensitivity to param-
eter changes, which we demonstrate with experiments. Our
resulting synthetic traffic sign recognition dataset Synset Signset
Germany contains a total of 105 500 images of 211 different
German traffic sign classes, including newly published (2020)
and thus comparatively rare traffic signs. In addition to a
mask and a segmentation image, we also provide extensive
metadata including the stochastically selected environment and
imaging effect parameters for each image. We evaluate the
degree of realism of Synset Signset Germany on the real-world
German Traffic Sign Recognition Benchmark (GTSRB) and in
comparison to CATERED, a state-of-the-art synthetic traffic
sign recognition dataset.

I. INTRODUCTION

W ITHIN the development of machine learning (ML)
and artificial intelligence (AI), and with the substan-

tial advances achieved in the performance, particularly of
deep learning, the attention of research and development has
shifted to include not only maximum performance of ML
and AI, but also properties relating to how this performance
is achieved—namely concerning the methods for providing
data of sufficient quality, recency and practical costs, and
understanding the system behavior w.r.t. the real world, in
terms of explainable AI (XAI), robustness, and validation.
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Fig. 1: Example images of Synset Signset Germany including challenging
conditions as, e.g., noisy, night, overexposed, or shadowed images (lower
row).

(a) Cycles (b) OGRE (c) Segmentation (d) Mask

Fig. 2: Two example quartets from the Synset Signset Germany dataset.

In this context, the use of synthetic data has been con-
sidered for various roles: Most commonly, synthetic data
can reduce costs and effort compared to real-world data
acquisition; for example, [1] cites an average of 90 minutes
for annotation and quality control of a single image of pixel-
level segmentation within the Cityscapes dataset, whereas
the same level of annotation can be extracted directly as
ground truth from a simulation (e.g., [2], [3]). Here, the
main focus is on the substitution of training data through
synthetic data, primarily because usually larger quantities of
training data are used in the development of ML systems
compared to during testing. Depending on the application,
synthetic data are used as an extension to available real-world
training datasets. Simulated images also provide a means
of producing data for rare or dangerous scenarios that can
hardly be collected under real-world conditions, which can
benefit training as well as testing data.

Beyond this, synthetic data can also provide an approach
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TABLE I
Overview of the most relevant publicly available traffic sign recognition datasets sorted by year of publication. For datasets of type rec (recognition),

the number of traffic sign instances is equal to the number of samples.

Dataset Year Type # Images # Samples # Classes ∅ Samples/class Real syn Region

MASTIF [4] 2009 rec 6 428 6 428 94 68.4 real Croatia
MASTIF [4] 2010 det & rec 3 889 5 215 86 60.6 real Croatia

Stereopolis [5] 2010 det & rec 847 251 10 25.1 real France
MASTIF [4] 2011 det & rec 1 013 1 473 51 28.9 real Croatia

STS (set 1&2) [6] 2011 det & rec 3 777 6 652 19 350.1 real Sweden
GTSRB [7] 2011 rec 51 882 51 882 43 1 206.6 real Germany

LISA [8] 2012 det & rec 6 610 7 855 49 160.3 real USA
BTSC [9] 2013 rec 7 125 7 125 62 114.9 real Belgium

TT100K [10] 2016 det & rec 100 000 30 000 221 135.7 real China
CURE-TSR [11] 2017 rec 2 206 106 2 206 106 14 157 579.0 mixed Belgium

TSRD [12] 2018 rec 6 164 6 164 58 106.3 real China
European DS [13] 2018 rec 82 476 82 476 164 502.9 real Europe

DFG [14] 2019 det & rec 6 957 17 598 200 88.0 real Slovenia
fully annot. MTSD [15] 2020 det & rec 52 453 257 541 400 643.9 real Global
part. annot. MTSD [15] 2020 det & rec 53 377 96 613 400 241.5 real Global

CATERED [16] 2021 rec 94 478 94 478 43 2 197.2 syn Germany
Synset Signset Ger. (ours) 2024 rec 105 500 105 500 211 500.0 syn Germany

to dependable AI, by analyzing the performance of ML
systems—and particularly their sensitivity to parameters—
more systematically and quantitatively, specifically when
used as testing data. This is particularly important for
determining, i.a., the robustness of AI systems. However,
to what extent these benefits can be leveraged depends
strongly on the degree of realism in the synthetic data. The
more pronounced this “sim-to-real” gap is, the less reliable
conclusions are, such as conclusions about the performance
of a given ML system in the real world, within the intended
operational design domain (ODD).

A particularly important regulation on requirements for
the use of training and testing data for AI/ML applications
is the European AI Act, proposed in 2021 and expected to
become law in mid-2024, stating in the texts adopted in the
March 2024 resolution “Data sets for training, validation and
testing, including the labels, should be relevant, sufficiently
representative, and to the best extent possible free of errors
and complete in view of the intended purpose of the system”
(with the clause “to the best extent possible” added compared
to the 2021 proposition) [17]. In this context, the quantitative
comparison between domain gaps for a choice of real vs.
synthetic data sources is expected to gain highly practical
relevance, particularly for high-risk applications identified
within the AI Act, such as “AI systems intended to be used
as safety components in the management and operation of
road traffic” [18, Annex III].

In this context, the task of traffic sign recognition plays
multiple roles that extend beyond the immediate purpose
of classifying traffic sign images into their legal categories
and semantics, for example for driver assistance systems,
automated driving, and mapping. Traffic sign recognition

is an extensively researched topic across a wide range of
methods [9], [19], [20], [21], [22], [23], spanning a range
from completely analytic approaches over classical ML with
tailored models and features up to modern deep learning.
In this domain, [24] is commonly cited as the first instance
where a machine learning approach outperformed humans on
a complex computer vision task, with the presented multi-
column deep neural networks (MCDNN) achieving half the
error rate of humans on the German Traffic Sign Recognition
Benchmark (GTSRB) dataset [25]. At the same time, with
new traffic signs constantly being released and coverage of
existing signs in datasets still limited for a distinction of less
common classes, the demand for both training and testing
data still persists. This connection between a large body of
recognition methods with still highly topical applications on
a task that provides a relatively controlled scope motivates
the choice of traffic sign recognition for an analysis of
synthetic data for training and reliability assessment via
XAI and robustness checks, and the generation of a novel
simulated dataset.

II. STATE OF THE ART

A. Publicly available Traffic Sign Recognition Datasets

Tab. I provides an overview of the most relevant publicly
available datasets for the task of traffic sign recognition.
Datasets of type “recognition” (“rec”) already contain images
cropped to approximately the sign size, while datasets of
type “detection and recognition” (“det & rec”) show entire
street scenes that must be cropped using specified bound-
ing boxes. Most of the datasets are only valid for certain
countries. The best known among the listed datasets are
GTSRB [7], Tsinghua-Tencent 100K (TT100K) [10], the
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Fig. 3: Comparison of real images represented by GTSRB (left) and state-of-the-art image synthetization methods for traffic sign recognition. For achieving
a better comparability we cropped the images to a similar area if necessary. The DCGAN, LSGAN, and WGAN samples stemming from [28] result from
training 200 epochs respectively.

European Dataset [13] (which includes, i.a., [4], [5], [6], [7],
[29]), and the Mapillary Traffic Sign Dataset (MTSD) [15].

B. Usage of Synthetic Data

The comparison of synthetic data with real data on fine-
grained classification was presented in [30] on the example of
the Synset Boulevard dataset for the task of vehicle make and
model recognition (VMMR). This study found synthetic data
to be generally capable of achieving performance comparable
to training on the real-world CompCars dataset [31] (cf. [30]
also for a broader overview of synthetic data use in mobility).
In the specific field of traffic sign recognition, many authors
use synthetic data to increase the volume of training and/or
test data, especially for rare classes. Commonly applied
approaches for such synthetic data generation are:

1) Image Augmentation: In general, image augmentation
methods (e.g., [26]) implement the following steps: They
collect traffic sign templates, apply an affine transformation
on them for diversifying the sign rotations and scales,
vary the sign hue and/or saturation values by possibly
including the background image properties or adapting the
background patches, combine templates and backgrounds,
and—if applicable—deploy post processing such as blur.
In [32], domain randomization is used additionally, while
[33] expands this procedure by randomly inserting computer
generated traffic signs (for one experiment also with GAN-
generated textures) to background images. The authors show
that image augmentation approaches are able to expand
real-world datasets in a targeted manner, but there are still
disadvantages, e.g., that DNNs could overfit on domain
differences or insertion edges, and that signs without dirt
or wear artifacts oversimplify the classification task.

2) Simulations: For the creation of the CATERED dataset
[16] the Carla Simulator1 was utilized. The authors of
CURE-TSR [11] expanded their dataset by adding simulated
images generated by using the Unreal Engine 42. It is also

1carla.org
2unrealengine.com

conceivable to employ computer games, as already practiced
for automotive datasets for object recognition [34] or seman-
tic segmentation [35]. With this approach, it is important
to ensure that the simulation environment offers sufficient
variance and that the traffic signs are not oversimplified
in order to achieve an adequate degree of realism, so that
the sim-to-real gap is kept as small as possible and that
unrealistic overfitting is prevented.

3) Generative Adversarial Networks (GANs): Other ap-
proaches, such as [27] and [28], use generative adversarial
networks (GANs) to generate additional training data leading
to an improvement of classification results. GANs are able to
increase the degree of realism compared to the previous de-
scribed approaches. However, referring to [27], applying the
geometric transformation through the GAN is challenging.
This is why the authors therefore implemented traditional
methods and used the GANs only for synthesizing the visual
appearance. This can also be observed in the results of [28],
as the geometric shapes of the signs are partly imprecise.
Furthermore, this approach relies on training data, which are
difficult to collect for rarely occurring traffic signs.

Fig. 3 compares images of all the approaches mentioned.

III. SYSTEMATIC SYNTHETIZATION:
DATASET GENERATION AND COMPOSITION

The dataset was generated through a systematic syntheti-
zation approach shown in Fig. 4, distinguishing between
factors that require learning distributions from training data
and factors that can be modeled analytically. The approach
aims to support explainable datasets, where each aspect in
the pipeline is associated with a model that is self-contained
and specified as clearly as possible w.r.t. assumptions and
characteristics.

A. Texture and Defect Generation

The visual appearance of traffic signs is prominently af-
fected by deterioration of the sign surface, through wear, tear,
vandalism, or fading of colors. These effects are complex
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Fig. 4: Overview of the generation pipeline built in OCTANE. Ideal images (a) are procedurally converted to template images (b) defining color degradation
and wear/tear masks. A GAN trained on worn traffic signs converts these to diffuse textures (c) that are combined into a 3D scene for physically-based
rendering. Segmentation and mask images (d) are rendered using OGRE, while Cycles is used for geometric raytracing of HDR raw image, albedo, and
normal image (e). The latter are used to denoise the raytracing samples. Based on this, imaging artifacts are computed on the 2D image data (f).

and difficult to model analytically; hence, a primarily data-
driven approach was chosen to introduce realistic defects into
textures.

The main goal of the particular approach is to achieve a
realistic distribution of defects at variable intensities across a
potentially unlimited set of traffic signs. Hence a model was
designed that can be trained on acquired data but does not
depend on particular sign shapes and can use medium-level
annotations to selectively apply defects.

1) GAN-based synthesis from template images: We apply
a Pix2Pix-based generative adversarial model (GAN) [36]
without the central 1 × 1 × 512 bottleneck to achieve a fully
convolutional layout that can adapt to given input / output
dimensions. With this layout, we train the GAN to convert
texture patches of arbitrary size at a fixed spatial resolution
of 8 px/cm, containing template images of arbitrary shapes,
into the equivalent texture patch with defects. Through this,
the GAN can generalize towards new physical sign sizes and
new shapes; however, possible correlations between sign type
(rather than visual shape) and damages (e.g., specific dirt on
wild animals crossing signs) will be largely eliminated.

The GAN is trained on 200+ worn traffic signs where the
color/dirt templates were extracted through classical image
processing (cf. Fig. 5b–c). Color templates support black,
white, and saturated colors. Gray spots annotate dirt and
scratches—hence, gray is not supported as a sign color,
limiting some existing variants of German traffic signs.
Retroreflector patterns are excluded and retroreflection is not
simulated. Pairs of mask (input) and raw (output) images are
generated by randomly cropping and rotating the original
images to patches of 2562 × 3 and randomly shuffling the
RGB channels to increase the color variation, since yellow,
green, cyan, and purple hues are underrepresented or not
represented at all in the original dataset.

The output textures are used exclusively as the dif-
fuse component in the PBR (physically-based rendering,
cf. Sec. III-C) surfaces.

2) Generation of template images from sign shapes: The
template images that are used as input to the GAN (Fig. 5d)
are generated from the Wikipedia overview of German traffic
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(a) Fully-convolutional Pix2Pix structure with 22 × 512 central bottleneck.
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(e) infer. output
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Fig. 5: GAN setup for defect synthetization.

signs3. The signs are separated into black, white, red, orange,
yellow, green, and blue components. Each color component
is faded stochastically and homogeneously across each sign
based on the stochastic distribution of the real sign sam-
ples. Subsequently, a gray dirt mask, procedurally generated
through a noise process, is overlaid, combining arbitrary
shapes and rectangular shapes, the latter representing worn
stickers that occur frequently in the real dataset.

B. Scene Variation

The scene variation and rendering of Synset Signset Ger-
many is performed by the Fraunhofer simulation platform
OCTANE4, written in C++ and following a plugin-based
architecture. The following scene variations are applied:

1) Traffic sign material: Each traffic sign instance is
assigned a unique texture generated as described in Sec. III-
A. In addition, the roughness component in the PBR surface
is uniformly varied in the interval between 0.2 and 0.4, the
specular component between 0.3 and 0.5.

3de.wikipedia.ediaorg/wiki/Bildtafel der Verkehrszeichen in der
Bundesrepublik Deutschland seit 2017

4octane.org
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2) Traffic sign pole: We distinguish traffic sign classes
into those that are to be exclusively featured on vertical poles,
and those that can occur both on vertical and on horizontal
poles. In the second case, a horizontal pole is uniformly
chosen with a probability of 0.3, a vertical pole otherwise.
The pole diameter varies in the vertical case between 8 cm
and 12 cm, in horizontal case between 8 cm and 20 cm.
The roughness (between 0.4 and 0.6), and the diffuse color
(R=G=B ∈ [0.25, 0.4]) of the poles’ PBR surface are also
varied.

3) Number of signs per pole: For each traffic sign in our
dataset, we manually labeled permissible possible upper and
lower signs by taking the German traffic code / regulation
StVO5 (Straßenverkehrs-Ordnung) and real-world examples
into account. Thereby, we have not only considered the 211
traffic signs contained in Synset Signset Germany, but also
135 additional supplementary traffic signs. Additional traffic
signs are only added to vertical poles with a probability of
0.5 to increase the dataset’s level of difficulty.

4) Camera orientation: We choose the camera orientation
as follows: In case of a vertical pole, roll ∼ N(0.0◦, 2.0◦),
pitch ∼ N(5.0◦, 10.0◦), and yaw ∼ N(0.0◦, 21.0◦). For
horizontal poles, we define a smaller yaw orientation range
but higher pitch mean, namely roll ∼ N(0.0◦, 2.0◦), pitch ∼
N(30.0◦, 10.0◦), and yaw ∼ N(0.0◦, 16.0◦). The camera is
positioned so that it is centered on the traffic sign.

5) Environment: To modulate the environment and light-
ing, our approach uses image-based lighting (IBL) based on
327 uniformly sampled environment maps collected from
Polyhaven6. Moreover, their azimuth is also varied uniformly.

6) Occlusion object: To cast shadows, a 3D tree object is
randomly placed in the scene for 3/4 of the images. Whether
the shadow is visible on the sign also depends on the random
position of the sun.

C. Optical Simulation / Rendering Pipeline

The optical simulation in OCTANE follows the general
framework of physically-based rendering (PBR) [37] which
provides approximately consistent models for light transport
in the scene using a common set of properties. This enables
the exchange of “solvers” for image generation, for which
OCTANE currently supports the rasterization-based engine
OGRE7 as well as the path tracing engine Cycles8 from
the Blender project. We provide all 105 500 Synset Signset
Germany images rendered by Cycles and OGRE respectively.
For the XAI and robustness analysis the rendering was
performed by OGRE to be able to test more configurations
due to the reduced amount of render time. The segmentation
masks and mask images where created by using OGRE.

As an approximation for the complex light transport in the
scene, the modeling separates into an idealized geometric
light tracing in the scene purely based on ray / surface
interactions, and the computation of convolutional effects

5stvo2go.de/verkehrszeichen-wissensnetz
6polyhaven.com
7ogre3d.org
8cycles-renderer.org

and degradations based on the resulting high dynamic range
raster images.

Thus, subsequent computations after the geometric render-
ing include the following:
• Stochastic errors in automatic exposure control (AEC)

and white balance (WB) as presented in [30].
• Simulation of the point spread function (PSF) based

on a Tamron M112FM35 35 mm lens to represent
focusing, lens optics, and diffraction through a mixture-
of-Gaussian model as presented in [30].

• Simulation of lens flares for visible light sources and
lighting-dependent noise, each as presented in [30].

• Simulation of motion blur and chromatic aberration
through linear convolution kernels in arbitrary direction
with uniformly distributed length ∼ U(0 px, 10 px).

• Simulation of digital image sharpening effects using
unsharp masking.

• Addition of artifacts from Bayer BGGR bilinear demo-
saicing as in [30].

For all simulated effects and artifacts, the stochastically
selected parameter values are given per individual image in
the dataset.

D. Dataset Statistics

Our resulting dataset Synset Signset Germany contains
211 traffic sign classes depicted in Fig. 6. The dataset is
balanced with 500 images per class, resulting in a total of
105 500 images. Thereby, the traffic sign classes can be
grouped as follows:

17 Speed limit signs 45 Danger signs
33 Other prohibitory signs 21 Derestriction signs
12 Stop, wait, and parking signs 28 Information signs
13 Driving lane control signs 4 Priority signs
13 Special zones and way signs 4 Highway signs
13 Additional road signs 8 Other signs

The image resolutions in our dataset vary between the
maximum resolution of 389× 389 pixels and the minimum
resolution of 22× 22 pixels.

IV. SYNTHETIC DATA AS TRAINING DATA

To determine the degree of realism in the synthetic
data, we evaluate our dataset in comparison to the GTSRB
dataset [7] based on the subset of the first 43 classes in Synset
Signset that overlaps with GTSRB. Additionally, we utilize
the CATERED [16], [38] dataset for training and evaluation
as a synthetic reference dataset. For all experiments, we
employ a ConvNeXt-Small [39] network with similar settings
as Sielemann et al. [30]. We only refrain from applying
random flip augmentation since the orientation of some signs
are a distinguishing feature, and we utilize different learning
rates. For the evaluation on CATERED, we additionally
remove the center crop and instead directly resize to 224x224
since the images in CATERED are already tightly cropped.

Regarding the learning rates, we train models with learning
rates of 10−4, 10−3, and 10−2 and choose the learning rate
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Fig. 6: Overview of the signs in Synset Signset Germany. The first row of 43 signs corresponds to the classes in GTSRB. Sign shapes are based on the
Wikipedia overview of German traffic signs from 2017 onwards (cf. footnote 3).

TABLE II
Top-1 accuracy of each combination of training and testing on the consid-
ered datasets. The results indicate the high effectiveness of Signset for

training as well as for evaluation purposes.

Eval. ▶ Signset Signset
GTSRB CATEREDTrain.▼ Cycles OGRE

Signset
99.5% 99.4% 98.3% 84.4%Cycles

Signset
99.6% 99.6% 98.2% 84.6%OGRE

GTSRB 89.4% 87.4% 99.9% 77.1%
CATERED 50.0% 48.6% 76.4% 86.1%

with the best in-domain result for each of the datasets.
This is done to choose the learning rate which is most
appropriate for training on each dataset while reducing the
risk of overfitting in the cross-domain evaluations. We apply
an 80–20 split to Signset for extracting a training and a
validation set while utilizing the official train–validation
splits for the other datasets. The results as measured with
top-1 accuracy are shown in Tab. II. They show an accuracy
above 80 % for the evaluation on all three datasets when
training on Synset Signset Germany. For the evaluation in
the cross-dataset scenarios, the scores are just closely behind
the in-domain trainings, only lacking 1.2 percentage points
when evaluating on the real-world GTSRB dataset, while the
evaluation on Signset shows the highest score by a large
margin. This highlights the usefulness of our dataset for
training classification models. Moreover, the large margin
between training on Signset compared to training on one of
the other datastes for an evaluation on Signset indicates the
challenge of the training dataset, and thus, a high usefulness
for evaluation purposes considering the saturation of possible
improvements on the GTSRB. It additionally provides a
significantly higher value due to the inclusion of a total of
211 instead of 43 classes, with a model trained on all classes
still achieving a score of 99.6 % for both full Signset dataset
versions, Cycles and OGRE.

V. SYNTHETIC DATA FOR
XAI AND ROBUSTNESS ANALYSIS

Synthetic data can also play a relevant role in the inves-
tigation of ML models in terms of robustness (stability of
the model prediction performance w.r.t. input perturbations)
and explainability, which attempts to explain model decisions
in order to increase their comprehensibility. Both of these
aspects are important in assessing the reliability of a trained
AI/ML system, especially if that system is to be used in a

Fig. 7: Example image with its corresponding FA map overlaid on the left.
The center image shows the pure FA map, and the right image shows only
the features (i.e., the image pixels) with increased attribution value that
make up the traffic sign.

safety-relevant context.
In this regard, we use the Synset Signset Germany syn-

thesis pipeline to evaluate specific explainability and global
robustness measures. By introducing certain parametric per-
turbations, we can ascertain the explanation quality and
robustness level for arbitrary parameters. Explanation quality
is quantified via the pixel ratio, under the premise that
a “good” explanation should predominantly highlight the
object of interest rather than something in the background.
In the experiments described, explanations are generated
using local saliency methods that yield feature attribution
(FA) maps per image. These maps, when combined with
binary mask images (cf. Fig. 2, right), enable us to as-
sess the amount of attributed features (i.e., pixels with a
positive attribution value) that belong to the traffic sign.
Specifically, the pixel ratio is defined as the proportion of
positively attributed pixels—weighted by their attribution
value—constituting the traffic sign relative to those in the
entire image. This definition is illustrated in Fig. 7: The pixel
ratio is the ratio of the positive FA in the right image to
the positive FA in the center image. The higher its value,
the better the explanation. The FA was computed using the
KernelSHAP method from the Captum library9.

Global robustness is evaluated through the method de-
scribed in [40]. The evaluation is based on a sequence
of hypothesis tests certifying a specific level of global
robustness given a required confidence level. In contrast
to the aforementioned method, instead of comparing the
model prediction for the original input with the prediction
for the perturbed input, here we compared the prediction for
the original input with the ground-truth label. In that sense
prediction performance for different perturbation intensities
is used to assess robustness.

To demonstrate the approach, we consider a ResNet-
18 [41] trained on the GTSRB dataset [7]. However, the
procedure works for any model. We focus on one specific
perturbation, namely motion blur, and vary its intensity

9captum.ai
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TABLE III
Results of theXAI and robustness analysis on three different datasets with

images of varying motion blur intensity.

Dataset Pixel Ratio Global Robustness

No motion blur 0.74 0.9
Mid-level motion blur 0.63 0.88

High-level motion blur 0.58 0.84

Fig. 8: Example images for the three different datasets. On the left is an
image with no motion blur, in the center an image with mid-level motion
blur, and on the right an image with high-level motion blur.

parameter in order to create three distinct traffic sign datasets
for our experiments. These datasets correspond to none, mid-
level, and high-level motion blur, as depicted in Fig. 8. The
results of the experiments are reported in Tab. III.

As expected, prediction performance as well as the quality
of explanations (i.e., the pixel ratio) decrease with increasing
motion blur intensity. From this it can be concluded that
the model’s performance diminishes when processing images
with increasing levels of motion blur.

Overall, the benefit of Synset Signset Germany for XAI
and robustness analysis lies in the ability to obtain quanti-
tative measures for specific desired perturbation intensities.
Furthermore, the inverse problem of finding intensity param-
eters to a required level of robustness and explanation quality
can be addressed.

VI. CONCLUSION AND OUTLOOK

We have presented the Synset Signset Germany dataset,
a synthetic dataset for the task of traffic sign recognition,
containing a total of 105 500 images of 211 different German
traffic sign classes, including comparatively rare and very
recent traffic signs. A subset of 43 classes in the dataset aims
to represent a “synthetic twin” of the GTSRB dataset [7] with
similar imaging parameters.

For each sign, detailed, stochastically chosen synthetiza-
tion parameters are provided, along with additional binary
mask and a segmentation mask label images. This is intended
to support both the use of the dataset to understand machine
learning effects on real data due to known “ground truth”
parameters in the simulated images, and to understand the
impact of different simulation methods on dataset quality.

Through this, the resulting dataset is among the largest
and most diverse datasets for traffic sign recognition and, to
the best of our knowledge, one of the first publicly available
large-scale synthetic datasets for this task.

Our implemented synthesis pipeline proved to combine
the advantages of data-driven and analytical modeling. Com-

pared to the purely analytically simulated CATERED dataset,
Synset Signset Germany achieves an approximately 20 %
better top-1 accuracy, which, together with the high cross-
dataset scores, indicates a good generalization ability prob-
ably due to the increased level of realism resulting from the
GAN generated textures.

Outlook

One of the main advantages in the use of synthetic data
generation is its scalability towards further applications.
Hence, based on the work, an important next step is to
abandon the current limitation on German traffic signs and
provide extensions towards international traffic signs.

A widely acknowledged limitation of synthetic data, in
turn, is the sim-to-real domain gap. While the practical
experiments indicate that the domain gap is sufficiently
low for practical applications as training data, and that the
data/metadata composition is well suited XAI, the require-
ments for the use as testing data are considerably higher.
Here, the dataset not only has to cover the target domain
sufficiently to train adequate generalization capabilities, but
instead must also enable the quantitative performance es-
timation of trained models by relating effects on synthetic
data to those on (yet unseen) real-world data. While the
extensive annotation provided with the dataset is expected
to support research in this area, i.e., by conducting XAI and
robustness analyses for the remaining parameters, there is
still considerable demand for future research.

The GAN-based defect synthesis so far uses only a very
simple concept that does not distinguish between types of dirt
and damage/wear and lacks representation of features such
as gray sign areas and retroreflectors. Future work should
improve on these limitations.

Furthermore, the number of occlusion objects should be
increased in order to achieve more complex and diverse
shadow casts and occlusions of the traffic signs. If the size
of the synthetic dataset is to be significantly increased, it
would be advisable to collect more environment maps to
gain a higher data variance.

Eventually, the choice of recognition models in this paper
is limited to few deep learning models within the state of
the art. A more extensive analysis including more diverse
models and potentially also some classical, non-deep learn-
ing approaches would substantiate the findings and extend
the understanding of the applicability of the dataset.
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