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Abstract—Common approaches to explainable AI (XAI) for
deep learning focus on analyzing the importance of input features
on the classification task in a given model: saliency methods
like SHAP and GradCAM are used to measure the impact of
spatial regions of the input image on the classification result.
Combined with ground truth information about the location
of the object in the input image (e.g., a binary mask), it is
determined whether object pixels had a high impact on the
classification result, or whether the classification focused on
background pixels. The former is considered to be a sign of
a healthy classifier, whereas the latter is assumed to suggest
overfitting on spurious correlations.

A major challenge, however, is that these intuitive inter-
pretations are difficult to test quantitatively, and hence the
output of such explanations lacks an explanation itself. One
particular reason is that correlations in real-world data are
difficult to avoid, and whether they are spurious or legitimate is
debatable. Synthetic data in turn can facilitate to actively enable
or disable correlations where desired but often lack a sufficient
quantification of realism and stochastic properties.

To shed light on this issue and test whether feature importance-
based XAI reliably distinguishes between true learning and prob-
lematic overfitting, we utilize the task of traffic sign recognition.
Based on the synthesis pipeline of the Synset Signset Germany
dataset, which demonstrated comparability to real-world data,
we show how systematically generated synthetic data can test
assumptions about feature importance-based XAI and isolate
factors between classification quality and XAI values.

Therefore, we systematically generate six synthetic datasets
for the task of traffic sign recognition, which differ only in
their degree of camera variation and background correlation.
The generated datasets, which we provide for download under
a CC-BY license, enable us to quantify the isolated influence of
background correlation, different levels of camera variation, and
considered traffic sign shapes on the classification performance,
as well as background feature importance. A study of this kind
is nearly impossible to conduct with real-world data, as real-
world data can only be collected with difficulty at this level of
comparability and without additional influencing factors. Results
include a quantification of when and how much background
features gain importance to support the classification task based
on changes in the training domain, and show that such metrics
can be indicative of complex properties of the training data and
task, not purely of learning quality.

Download: synset.de/datasets/synset-signset-ger/background-effect
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I. INTRODUCTION

HE principal strength of machine learning (ML) models

and especially deep neural networks (DNNs) is their
ability to accurately approximate given data distributions.
This leads to impressive results, as complex relationships in
training data can be learned and mapped [1]; however, in turn,
these complex relationships cannot be trivially understood
by humans, making DNN decisions incomprehensible; at the
same time, the growing scope of AI/ML applications has
given rise to a growing number of regulations and standards
aiming at transparency and trustworthiness [2]. To overcome
this issue, explainable artificial intelligence (XAI) methods
were introduced to improve transparency, interpretability, and
thus error analysis and trustworthiness of ML applications.
For computer vision tasks, saliency methods such as, e.g.,
Kernel SHAP [3] and GradCAM [4] are predominantly used,
providing users with so-called feature attribution (FA) maps
per input image, which quantify the contribution of each
(super-)pixel to the model’s prediction.

In case of classification tasks, these methods are used to
gauge the validity of a classifier’s learned features, such that a
healthy classifier is expected to base its decisions primarily
on features located on the object to be classified, rather
than the background (cf. [5], [6]). Whether, however, low
feature attribution on the background does indeed distinguish
a healthy classifier from an unhealthy one (namely one that
overfitted on spurious background correlations), as intuition
may suggest, has thus far not been evaluated systematically.
However, the validity of explanations in XAl depends critically
on aligning AI/ML properties adequately with human under-
standing; merely transforming abstract output into a form that
invites intuitive but error-prone interpretation will clearly serve
no favorable purpose. Therefore, it is pivotal to improve the
understanding of XAl metrics to ensure that these, in turn, can
contribute to improving the understanding of AI/ML methods.

Such a systematic study of an XAI method is commonly
difficult to achieve, as ML tasks and data are usually complex
and difficult to control, rendering it difficult to establish a
reliable baseline against which the performance of an XAl
method could reliably be quantified. To address this challenge,
we utilize the traffic sign recognition use case, since it is a
well-understood classification task offering classes with and



without human-modeled background correlation. We base the
investigations of this work on synthetic / simulative data, since
it allows one to use highly accurate labels and selectively intro-
duce specific biases while maintaining, most importantly, that
training and testing data can be independent and identically
distributed (i.i.d.) in a strict sense, thus enabling systematic
evaluations at a level that is usually impossible for real-world
data. For data synthetization, we utilize the generation pipeline
presented in [5], by which a synthetic twin of the well-known
German Traffic Sign Recognition Benchmark (GTSRB) [7]
was created, named Synset Signset Germany. The cross-dataset
evaluations in [5], which indicate a good degree of realism
for the synthetic data and a relatively narrow domain gap
between the provided Synset Signset dataset and GTSRB [7],
ensure that the conclusions achieved herein are closely linked
to reality rather than merely hypothetical results on simplified
toy examples.

Overall, this publication aims to...

(D) ... systematically examine the XAl assumption of healthy
classifiers to predominantly focus on the foreground object,
by analyzing which data properties increase the amount of
background feature importance and measure their impact on
the classification performance,

(II) ... highlight the usefulness of synthetic data for investi-
gating and measuring DNN properties and thus quantitatively
evaluating XAI metrics,

(II) ... provide state-of-the-art synthetic datasets for the
task of traffic sign recognition and suitable for further XAI
metric investigations, containing accurate labels, segmentation
images, masks, and specifically modeled biases,

(IV) ... and quantify the influence of environment cor-
relations on the task of traffic sign recognition and thus
sensitize DL researchers and developers to the importance and
consequences of data selection.

II. STATE OF THE ART

A. Synthetic Data (Generation) for AV Perception

The use of synthetic data in computer vision tasks has seen
wide application in recent years, where wide overviews of
the topic for heterogeneous applications can be found in [8]-
[10] for example. In the domain of automated vehicle (AV)
perception, synthetic datasets have been used successfully for
training, including datasets based directly on computer games
[11]-[13] and computer game engines, such as Unity' or Un-
real Engine2 [14]-[19], including data simulated in the Carla
Simulator®. Other approaches to synthetic data include real-
world data modified through augmentation and recombination
(e.g., [20]-[23]), or the use of generative Al to create sensor
data, such as [24], [25] for the specific task of traffic sign
recognition.

Lunity.com
2unrealengine.com
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B. Evaluation of XAI Methods

Evaluation of XAI methods is a challenging task: Qualita-
tive evaluations are subject to human cognitive biases [26] and
are therefore not considered sufficiently objective [27]. Hence,
the XAl community is anxious to find quantitative and thus
more objective evaluation metrics/methods for assessing DNN
explanations: [28]-[31] give deeper insights and systematic
reviews on this topic. Based on extensive literature research,
Nauta et al. [28] identified twelve properties that optimal ex-
planations are desired to fulfill, the so-called Co-12 properties,
of which six evaluate XAI methods in terms of content. The
authors highlight synthetic data as useful for assessing the
correctness property by a ‘“controlled synthetic data check”.
However, other works make use of synthetic data to evaluate
additional properties, such as, e.g., the completeness (“preser-
vation check” [32], “deletion check™ [32]) or contrastivity
(“target sensitivity” [32]).

A general challenge of quantitative evaluation of XAl
metrics is the lack of available ground truth [26], as, for
example, semantic masks are usually not included in the
metadata of classification datasets. To overcome this issue,
several synthetic datasets especially designed for the task of
evaluating XAI metrics were introduced in recent years: The
Toy Color Dataset [33] (contains 5 X 5 pixel images with
four possible pixel colors, where DNNs can learn simple
color conditions), the an8Flower dataset [34] (a dataset of
different colored flower parts), or the FunnyBirds dataset [32]
(includes bird images from which individual object parts can
be removed).

III. INFLUENCING FACTORS OF BACKGROUND ATTENTION

To determine the effect of background on the task of
traffic sign recognition, we want to measure (I) the extent
to which DNNs trained on datasets with different modeled
properties take background into account for their classifi-
cation decision and (II) how this background consideration
affects the classification performance. This enables us to draw
conclusions about which data properties encourage DNNs to
focus on backgrounds and whether this background attention
is spurious or justifiable regarding the achieved classification
performance.

We assume three dataset properties to likely influence the
amount of background attention:

(D) Correlation of background: In a correlated traffic sign
recognition dataset, traffic signs appear mainly in their most
probable environment, which turns the background into a
source that can provide clues to the traffic sign’s class. This
offers an incentive to DNNs to also include background
features in their classification decisions, resulting in a greater
importance of background features.

(II) Degree of camera variation: A higher range of camera
variation might encourage DNNs to focus on traffic sign border
areas to perceive their optical distortion.

(II) Traffic sign shapes: Depending on the respective task
definition, identifying the traffic sign shape (by actively dis-
tinguishing foreground and background) can be advantageous



as it is a discriminative feature and allows one to exclude a
subset of traffic signs during the classification.

All three possible factors should be considered in the
evaluation to review and measure their influence and are thus
taken into account during the dataset generation.

IV. DATASET GENERATION

To generate the needed datasets, we utilized our parameteri-
zable rendering pipeline from our previous work on the Synset
Signset Germany dataset [5]. With the pipeline, our goal
was to combine the advantages of data-driven and analytical
modeling. Therefore, we added a GAN-based texture genera-
tion to our self-developed simulation platform OCTAS®* (for
details, see [5]). For the rendering process, OCTAS® currently
supports the usage of the rasterization-based engine OGRE3D?
as well as the path tracing engine Cycles® developed by the
Blender project. Since our evaluation results in [5] have shown
that there was nearly no difference between the generated
data from both approaches, we decided to solely use the less
computationally expensive OGRE3D engine for this work.

A. Correlated vs. Uncorrelated Environment

To compare datasets with correlated environment to those
with uncorrelated environment, we need to define both terms:

1) Correlated environment: Each traffic sign is depicted
in its most probable environment according to the German
traffic code / regulation StVO’ (StraBenverkehrs-Ordnung)
categorized into “urban”, “nature”, and “urban and nature”.
For example, a sign warning of wildlife crossing is likely
to be set up on a rural road (natural background), while a
sign warning of children is probable to be placed in an urban
context.

2) Uncorrelated environment: The traffic sign environment
is uniformly distributed randomly chosen from the combined
set of urban and nature maps, and therefore does not have a
semantic connection to the depicted sign.

The rendering pipeline utilizes image-based lighting (IBL).
To realize the un-/correlation, we collected all available urban
environment maps from Polyhaven® and manually restricted
the set to only those with a predominantly urban background.
Consequently, maps are filtered out that were, e.g., captured
in city parks and are therefore predominantly surrounded by
nature. A subset of 70 remaining maps results. Polyhaven
offers a larger selection of environment maps labeled as nature.
However, for a fair comparison we selected 70 environment
maps of type nature as well, where we tried to achieve a
comparable distribution of day times, although fewer night
maps were available. In Tab. I, the property distributions of
the urban and nature environment maps are compared.

4octane.org, formerly OCTANE
Sogre3d.org
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TABLE I
COMPARISON OF THE BACKGROUND PROPERTY DISTRIBUTIONS FOR THE SETS OF URBAN
AND NATURE ENVIRONMENT MAPS. BOTH SETS INCLUDE 70 MAPS EACH.

nature urban
morning / aftern. 28  40.0% 26 37.1%
sunrise /sunset 22  314% 18 257 %
DAY TIME midday 16 229% 10 143 %
night 4 5.7 % 13 18.6%
not specified 0 0.0% 3 4.3 %
clear 21 300% 20 28.6%
WEATHER partly cloudy 35 500% 28 40.0%
overcast 11  157% 18 257%
not specified 3 4.3 % 4 5.7 %
low 28 400% 32 457%
CONTRAST medium 10 143% 16 229%
high 32 457% 22 314%
natural 69 98.6% 56 80.0%
LIGHT artificial 1 1.4 % 13 16.6%
not specified 0 0.0 % 1 1.4 %
TOTAL 70 100% 70 100 %

B. Traffic Sign Selection

We selected the included traffic sign classes with great care,
as we wanted some properties to be evenly distributed across
the datasets. This comprises:

1) Traffic sign shapes: The generated datasets include 25
circular, triangular, and rectangular traffic signs each. In addi-
tion, seven signs of various shapes were added. An overview
of the traffic signs included by shape is given in Tab. II (top).

2) The most probable traffic sign environment: We consid-
ered including almost the same number of traffic signs to be
most probable in an urban and natural environment. Thereby,
we regarded the traffic sign shapes round, triangular, and
rectangular to also be almost equally distributed in urban and
natural environments. There is also a set of traffic signs that
are likely to appear in urban as well as natural environments.
Tab. II (bottom) shows the included traffic sign classes sorted
by the most likely environment of occurrence.

3) Traffic sign colors: For all classes of traffic sign shapes
as well as probable environments, our objective was to dis-
tribute the appearing colors evenly when possible, to prevent
trained networks from overfitting color details. The triangular
German warning signs are exclusively red and black with
one exception, which explains why the triangular signs are
predominantly red. However, the classes round, rectangular,
urban, and nature all contain red, gray, and blue traffic signs
(cf. Tab. II).

4) Risk of confusion: For all traffic sign shapes, we included
traffic sign classes that are likely to be confused with each
other. This applies, e.g., to classes that only differ in vertical
mirroring (e.g., left curve and right curve) or local details (e.g.,
pedestrian zone and bike zone).

Note that the 43 GTSRB traffic sign classes [7] are included.



TABLE 11
INCLUDED TRAFFIC SIGNS BY SHAPE (TOP) AND MOST PROBABLE ENVIRONMENT (BOTTOM).
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TABLE III
OVERVIEW OF THE SIX GENERATED SYNTHETIC DATASET’S PROPERTIES.

dataset correlation viewport variation  train  test
UF uncorrelated frontal 500 600
UM uncorrelated medium 500 600
UH uncorrelated high 500 600
CF correlated frontal 500 600
CM correlated medium 500 600
CH correlated high 500 600

C. Stages of Camera Variation

We assume that the degree of camera variation in the train-
ing data affects the environmental attention of the resulting
DNN. Therefore, we provide each dataset at three levels of
camera variation, using normal distributions N(u, 0):

1) Frontal (F): No camera variation, roll ~ N(0.0°,0.0°),
pitch ~ N(0.0°,0.0°), and yaw ~ N(0.0°,0.0°).

2) Medium (M): roll ~ N(0.0°,1.5°), pitch ~ N(0.0°,5.0°),
and yaw ~ N(0.0°,13.3").

3) High (H): roll ~ N(0.0°,3.0°), pitch ~ N(0.0°,10.0°),
and yaw ~ N(0.0°,26.6).

D. Other Dataset Configurations

In contrast to Synset Signset Germany [5], we have ab-
stained from using horizontally oriented traffic sign poles and
from adding additional signs to poles in this work. Multiple
signs or a change in pole orientation might additionally draw
the DNN’s attention to areas outside the traffic sign surface in
focus, and therefore distort the results. We did not change the
generation of template images from sign shapes, the GAN-
based texture and defect synthesis from template images, the
traffic sign material, traffic sign pole diameter, and pole mate-
rial variation, as they all proved to be reasonable. In addition,
the positioning and orientation of the 3D tree geometry, which
is used for occlusions and to cast shadows, remains unchanged.
We reused the simulated effects and artifact configuration,
but internally improved the white balancing and AEC error
calculation to reduce the number of extremely overexposed
images. For details on the pipeline, cf. [5].
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E. Resulting Datasets

We used the described data generation process and config-
uration to create a total of six synthetic traffic sign image
datasets. Tab. III gives an overview of their abbreviations,
high-level configurations, and number of images per class.
Each dataset contains 82 classes of traffic signs resulting in
41000 train and 49 200 test images per dataset, summing up
to a total of 541200 images. Exemplary images are depicted
in Fig. 1. We offer all of the six datasets publicly available
under the CC-BY license (download link on the first page).

Note that a two-letter abbreviation denotes the whole
dataset, e.g., UFq, refers to the complete uncorrelated train-
ing dataset captured in frontal view, consisting of 82 classes
with 500 images each. In a three-letter abbreviation, the third
letter C (circular), T (triangular), or R (rectangular) refers to
a dataset’s subset containing all signs of a specific shape (cf.
Tab. II (top)). So, e.g., the abbreviation CMT, denotes the
correlated test dataset’s subset of triangular-shaped traffic signs
captured with medium camera variation.

V. EvALuUATION
A. Training Setup and Network Instances

For our experiments, we employ a ConvNeXt-Small
(CNs) [35], ConvNeXt-Tiny (CNt) [35], and ResNet50
(RN50) [36] classification network from OpenMMLab’s pre-
training toolbox MMPreTrain [37]. On the one hand, we
expect from this selection to gain insight on the influence of
network size (CNs vs. CNt) and, on the other hand, to compare
the behavior of a state-of-the-art architecture (ConvNeXt) to
an older one (RNS50). The fundamental training set-up is
adopted from Sielemann et al. [38], whereby we refrain from
applying random flip augmentation because some traffic signs
only differ in vertical mirroring. Our previous experiments on
Synset Signset Germany [5] showed that the network trained
with a learning rate of 1073 achieved the best in-domain result
and therefore is also applied for this work.

Overall, we trained nine different network instances per
architecture: one on each of the six generated datasets training
sets (82 classes), and, for later conclusions on the influence of
the included traffic sign shapes, one on the circular, triangular,
and rectangular subset of the CMy.,;, dataset. Each of these
subsets comprises 25 classes. For each training, we saved the



(d) uncorrelated frontal (UFy,in)

(e) uncorrelated medium (UMpin)

63) uncorrelated high (UHm,m)

Fig. 1: Example images from the six generated synthetic datasets.

weights after the 100" epoch, as well as the best configuration
validated on the respective corresponding test dataset. We
denote the networks by DNN(dataset), so, e.g., CNs;00(UFiain)
refers to the ConvNeXt-Small instance trained for 100 epochs
on the training set of the uncorrelated frontal dataset.

B. Background Correlation Effect on Feature Importance

For calculating feature attributions (FA), we apply Kernel
SHAP (KS) [3], as it is model agnostic and has proved to
be well suited to explain classifications on ImageNet [29],
[39], and the widely known GradCAM (GC) [4] method, both
from the Captum library®. However, in principle, the metrics
could also be replaced by another suitable saliency method.
We define the KS hyper-parameters “baseline” to zero, the
“number of samples” to 1000, and group areas of 32 x 32
pixels into superpixels, leading to a FA resolution of 7 x 7.
Based on the FAs, the pixel ratio can be calculated, as for
the robustness analysis conducted in [5]. It is defined as the
ratio of positive attributing features within the traffic sign
image area relative to the absolute value of attributing features
in the whole image. Fig. 2 provides a visualization of the
components used for the pixel ratio computation using KS:
The KS values are computed based on the examined network
instance in addition to an input image. Related to each image,
the rendering pipeline outputs a binary mask which is used
to crop the positive KS values to the traffic sign dimensions.
These are summed and divided by the total sum of positive
pixel attributions, resulting in the pixel ratio.

In the first step, we calculate for both methods the mean
pixel ratios for all considered network architectures trained on
the six synthetically generated training datasets for 100 epochs
and evaluated on CF. But due to the high computing time
requirements of KS, we make two compromises:

(I) We restrict the feature importance experiments to evalu-
ate on one of the generated test sets. The choice has been made
for correlated, as the real world is assumed to be correlated,
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Fig. 2: Visual explanation of the pixel ratio calculation using Kernel SHAP.

and for frontal, because all network instances should be
familiar with this camera perspective.

(IT) We apply both methods only to the first 200 images of
each class in the test datasets instead of all 600 images per
class, which we denote by /3 CF.

Furthermore, we exemplarily provide for KS the mean pixel
ratios calculated on the shape-based subsets CFCies;, CFT e,
and CFR¢ and CNs to give an impression of the shape-based
differences. The KS findings are listed in Tab. IV, for GC in
Tab. V respectively. For better interpretability, the results were
column-wise colored blue (min value) over green to white
(max value).

When comparing uncorrelated to correlated across the ar-
chitectures (cf. Tab. IV left (KS) and Tab. V (GC)), the DNNs
trained on uncorrelated data predominantly achieve higher
pixel ratios, meaning they are less focused on the background
than their correlated counterparts. The only exceptions are
for both methods RN50 evaluated on high and for GC CNs
evaluated on frontal camera variation stage. In all other cases,
the pixel ratios for training on uncorrelated are between 0.0049
(min) and 0.0257 (max) for KS and 0.0038 (min) and 0.1284
(max) for GC greater than those of training on correlated data.
Although this trend might not seem strongly pronounced, the



TABLE IV
MEAN (1) AND 95 % cONFIDENCE INTERVAL (Clgs¢g,) OF THE SETS OF IMAGE-WISE PIXEL RATIOS CALCULATED BY USING THE KERNEL SHAP METHOD APPLIED ON (LEFT) THE
NETWORK ARCHITECTURES CONVNEXT-SMALL (CNs), CoNvNEXT-TINY (CNT), AND RESNET50 (RN50) AND (RIGHT) CONVNEXT-SMALL TRAINED ON EACH OF THE 6 SYNTHETIC
TRAIN DATASETS AND EVALUATED ON (LEFT) THE 1/3 SUBSET OF THE CORRELATED FRONTAL TEST DATASET (1/3 CFigs;) AND (RIGHT) ITS CIRCULAR (1/3 CFCigsr), TRIANGULAR
(1/3 CFTgsr), AND RECTANGULAR (1/3 CFR ggr) SUBSETS.

Eval Network Architectures Eval CNs on Shapes
CNsigo on 4 CFy | CNtjgp on 4 CFieyr | RN50109 on 1 CFiet | CNsjop on 2 CFCieyr | CNsigo 0n 3 CFTe | CNsjop 0n 1 CFRiey
M Clos M Clos M Clos M Clos M Clos % M Clos
~  UFuu, | 0.6589  0.0032 | 0.6365 0.0033 | 0.7418 0.0033 0.6685 0.0020 0.6236 0.0017 0.7381 0.0022
533 CFiain | 06333 @ 0.0035 [ 0.6191 0.0035 | 0.7312 0.0031 0.6472 0.0021 0.5889 0.0020 0.7200 0.0024
a UMyin | 0.6536  0.0032 | 0.6364 0.0033 | 0.7362 0.0031 0.6674 0.0020 0.6160 0.0017 0.7298 0.0022
_%D CMyin | 0.6326  0.0034 | 0.6247 0.0035 | 0.7303 0.0031 0.6466 0.0021 0.5825 0.0020 0.7224 0.0024
§ UHgin | 0.6437 0.0031 | 0.6426  0.0032 | 0.7374 0.0030 0.6511 0.0020 0.6116 0.0017 0.7191 0.0022
= CHyin | 0.6387 @ 0.0033 | 0.6288  0.0034 | 0.7405 0.0029 0.6518 0.0021 0.5920 0.0019 0.7229 0.0023
TABLE V TABLE VI

MEAN (1) AND 95 % cONFIDENCE INTERVAL (Clys ¢,) OF THE SETS OF IMAGE-WISE PIXEL

RATIOS CALCULATED BY USING THE GRADCAM METHOD APPLIED ON THE NETWORK AR-

cHITECTURES CONVNEXT-SMALL (CNs), ConvNEXT-TiNy (CNT), AND RESNETS0

(RN50) TRAINED ON EACH OF THE O SYNTHETIC TRAIN DATASETS AND EVALUATED ON
THE 1/3 SUBSET OF THE CORRELATED FRONTAL TEST DATASET (1/3 CF gep).

Eval Network Architectures
CNsjop on % CFest | CNtjo on % CFiest | RN50;0 on % CFet
H Clos g H Clos g, H Clos g,
~  UFuin | 0,5466 0.0060 | 0,8153  0.0048 | 0,9185 0.0029
aé‘ CFin | 0,5873 0.0070 | 0,6869 | 0.0062 | 0,9042 0.0030
5 UMain | 0,6269  0.0061 0,8162  0.0045 | 09145 0.0030
%D CMpin | 0,5881 0.0069 | 0,7008 0.0065 | 0,9201 0.0028
§ UHpain | 0,5609  0.0056 | 0,8440  0.0040 | 0,9202 0.0028
& CHyin | 0,5109  0.0068 | 0,7666  0.0050 | 0,9164 0.0028

consideration of the 95% confidence intervals (CI), where
the largest is +0.0035 (KS) / +0.0070 (GC), indicates it
to be significant. With regard to differences between the
architectures, it can be observed that with a rising number
of trainable parameters, the average pixel ratio decreases,
so the background attention rises. However, in comparison
to the CN architectures, RN50 shows only small differences
between training on correlated and uncorrelated data, which
indicates that this architecture is not able to draw many helpful
classification clues from the background. In contrast to our
assumptions, no clear tendency can be identified concerning
the different stages of camera variation. The break down
according to shapes (cf. Tab. IV right) shows rectangular signs
to have the highest mean pixel ratio, followed by circular signs,
while triangular signs result in the lowest values. To ensure
this not to be a consequence of the chosen FA resolution, we
also evaluated this part with a FA resolution of 14 x 14 and
28 x 28 (not given in table due to limited space). With higher
resolutions, the mean pixel ratio drops, but the observed trend
remains.

As second step, we repeat the pixel ratio evaluation for the
three network instances per architecture which were exclu-
sively trained on traffic signs of the same shape (circular, tri-
angular, and rectangular). The results are presented in Tab. VL.
Compared to the pixel ratio mean of CNjpo(CMyrin) evaluated

MEAN (1) AND 95 % cONFIDENCE INTERVAL (Clys ¢,) OF THE SET OF IMAGE-WISE PIXEL

RATIOS CALCULATED FOR THE NETWORK ARCHITECTURES CONVNEXT-SMALL (CNs),

CoNvNEXT-TiINY (CNT), AND RESNET50 (RN50) TRAINED ON THE SHAPE-BASED

SUBSETS OF CMgay AND EVALUATED ON THE RESPECTIVELY CORRESPONDING SHAPE-

BASED 1/3 CF gy SUBSET. THE DIFFERENCE BELOW { RELATES TO THE PIXEL RATIO MEANS
oF “EvaL CNs on SHaPEs” IN TaB. IV.

Eval on 1/3 CFX e
CNS]()O CNthO RNSO[OO

Train v H Clos g H Clos Jz Clos

CMCy 0.6885 0.0021 | 0.6757 0.0020 | 0.7933 0.0015
+0.0419 +0.0330 +0.0272

CMT,.;, 0.6565 0.0019 [ 0.6439 @ 0.0018 | 0.7540 0.0020
h +0.0740 +0.0801 +0.0637

CMRy., 0.7528 0.0019 | 0.7492 0.0020 | 0.8403 0.0018
+0.0304 +0.0303 +0.0475

on CFXiey (cf. Tab. IV), the means notably increased. This
implies that the CNs trained on traffic signs of only one shape
are clearly less focused on the background features for their
classification. In summary, this experiment thus provides the
insight of the task definition having a comparably high impact
on background feature importance.

C. Background Correlation Effect on Classification

For investigating the effect of background correlation on
the classification performance, we conducted two additional
training runs to the existing ones with differing random seeds
for choosing the initial network weights, to be able to report
the mean and standard deviation of three runs overall. The
results are provided in Tab. VIIL

The results show that the CNss architecture is able to benefit
from correlated data: Independently of the stage of camera
variation, the instance trained on correlated data is always
able to achieve the highest top-1 accuracy evaluated on the
correlated test set. However, with increasing camera variation
also the difference between the highest (white) and lowest
(blue) top-1 accuracy increases. For the camera variation
stages F and H, the worst result is obtained by the networks
trained on correlated, but tested on uncorrelated data. This may
be attributed to the fact that mixed-up backgrounds are likely



TABLE VII
ToP-1 ACCURACY FOR TRAINING ON EACH OF THE 6 GENERATED SYNTHETIC DATASETS, EVALUATED ON THE RESPECTIVELY CORRESPONDING CORRELATED AND UNCORRELATED
(COUNTERPART) TEST SET FOR THE BEST AS WELL As THE 100" EpocH. FOR BETTER INTERPRETABILITY, THE RESULTS WERE COLORED BY 4 X 4 SQUARES FROM BLUE (MIN
VALUE) OVER GREEN TO WHITE (MAX VALUE). PLEASE NOTE THAT THE COLORING IS BASED ON THE FULL PRECISION VALUES. THE REPORTED MEAN AND STANDARD DEVIATIONS ARE
BASED ON THREE TRAINING RUNS EACH, WITH DIFFERENT RANDOM SEEDS.

ConvNeXt-Small ConvNeXt-Tiny ResNet50

Best Epoch 100" Epoch Best Epoch 100" Epoch Best Epoch 100" Epoch

UX[CSI CX‘ES[ UX[CS[ CX[CSI UX[ESI CX[CS[ UX[CS[ CX[ESI UXIESt CX[CS[ UX[CS[ CX[CSI

UF... 99.83  99.87 | 99.83  99.88 | 99.80 99.85 | 99.80 99.85 | 99.77 99.80 | 99.77 99.81

frain +0.007 +0.020 | +0.010 +0.015 | +0.007 +0.014 | +0.007 +0.012 | +0.015 +0.007 | +0.012 +0.005

=  CF.. 99.80 99.88 | 99.80 99.89 | 99.75 | 99.85 | 99.75 | 99.86 [ 99.73 | 99.82 [ 99.74 | 99.83

% train +0.012 +0.009 +0.006 +0.004 +0.018 +0.018 +0.008 +0.010 +0.005 +0.023 +0.008 +0.009

= UM.... 99.82  99.81 | 99.84 99.84 | 99.79 99.81 | 99.82 99.82 | 99.76 = 99.74 | 99.77  99.75

A train +0.014 +0.027 +0.005 +0.006 +0.026 +0.012 +0.011 +0.014 +0.012 +0.012 +0.008 +0.010
50

g CM... 99.81 | 99.85 [ 99.81 | 99.85 [ 99.77 @ 99.83 | 99.78 99.83 | 99.72  99.77 | 99.73 © 99.78

.5 train +0.008 +0.004 | +0.011 +0.004 | +0.007 +0.007 | +0.005 +0.013 | +0.022 +0.033 +0.010 +0.011

= UH.... 99.39 19933 | 99.38 [ 99.34 | 99.32  99.29 | 99.31  99.28 | 99.22 | 99.15 | 99.21 | 99.15

train +0.010 +0.020 +0.021 +0.017 +0.010 +0.000 +0.012 +0.003 +0.023 +0.017 +0.022 +0.016

CH... 99.32 | 99.37 { 9930  99.35 [ 99.27 99.31 | 99.24 99.31 | 99.20 | 99.17 | 99.20 99.19

train +0.005 +0.018 +0.008 +0.003 +0.012 +0.028 +0.026 +0.025 +0.021 +0.041 +0.018 +0.018

to confuse the network, which should have learned a correlated
context. An exception is the camera variation stage M, where
CNs(UMpin) evaluated on CM,e achieved the worst result.
For the instances trained on uncorrelated data, it holds that
their performance is always better or at least equal when tested
on the uncorrelated test set in comparison to the correlated one.

For the remaining architectures CNt and RN50, the observed
trends are less pronounced. In ten out of twelve cases, the
instances trained on correlated data perform worst when eval-
vated on uncorrelated data. This implies that predominantly
instances trained on correlated data perform better when tested
on correlated data; in seven out of twelve cases, they perform
best. Furthermore, it can be noticed that the differences in
top-1 accuracy between networks trained on uncorrelated data
and tested on uncorrelated vs. correlated data are in some
cases notably higher than observed for CNs. The fact that the
results of RNSO(XHji,) trained for 100 epochs deviate from
the trends shown by the other instances in the KS experiments
as well as in the classification performance experiments might
indicate that overfitting occurred in this case.

VI. ConcLusioN AND OUTLOOK

In this work, we measured and systematically analyzed the
effect of background on the feature importance and classifica-
tion performance for the use case of traffic sign recognition.
Therefore, we generated six synthetic datasets based on the
synthesis pipeline of the Synset Signset Germany dataset [5],
which differ with respect to their background correlation
and stages of camera variation. We evaluated the datasets
concerning their degree of background feature importance by
determining the mean pixel ratio of Kernel SHAPs and clas-
sification performance when used as training data represented
by the top-1 accuracy.

To conclude this work, we look back at our initial ques-
tion of whether feature importance-based XAl reliably distin-
guishes between true learning and problematic overfitting with
regard to our three formulated and investigated hypotheses on
influencing factors of background attention:

() The correlation of background: Our results show a
significant trend of correlated training data leading to the
network giving a higher importance to background features.

(Il) Stages of camera variation: Our findings do not support
the hypothesis that higher camera variation results in more
background attention.

(1) Traffic sign shapes: A higher variety of traffic sign
shapes included in the classification task results in an increased
importance of background features, as recognizing the shape
against the background is a discriminative feature.

Contrary to the general assumption of lower background
attention being an attribute of a well-performing, healthy
classifier, our performance evaluation showed especially the
modern ConvNeXt-Small architecture, which has the largest
number of trainable parameters compared to the investigated
architectures, being able to benefit from background cor-
relation when tested on data of the same domain despite
higher background attention. The results also demonstrate
that background attention may increase through other factors,
namely as it serves to distinguish the shape of foreground
objects, which again is not indicative of deficient training.

The presented study has only shed light on the problem with
regard to one use case. To widen the view, it would certainly
be necessary to investigate more use cases, a greater variety of
DNN architectures, and a larger selection of saliency methods.
Nevertheless, some general findings can be identified from this
work and applied to other use cases:

Our study shows synthetic data to be a helpful tool for inves-
tigating XAl metrics with respect to particular data properties,
provided that they exhibit a sufficient degree of realism. In
future work, it might be beneficial to include more corner cases
in the data (for the use case of traffic sign recognition, e.g.,
rain, snow, greater overexposure, ...) to increase the dataset
difficulty. This could further highlight performance differences.
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