Measuring the Effect of Background

Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception (Sielemann, Barner et al., 2025)

6

datasets

82

classes

90200

images per dataset

541200

total images

A major advantage of synthetic data is their parameterizability: our Synset Signset rendering pipeline for generating synthetic traffic sign images allows one to precisely specify the random distributions from which the images are sampled. Additionally, the exact parameter configuration is known for each individual image. Due to these properties, synthetic data are not only suitable for training machine learning (ML) approaches, as demonstrated in our previous work on Synset Signset Germany, but can also be used to systematically test ML approaches or tools, as long as a sufficient degree of realism and variance is ensured. On that basis, this work aims to systematically investigate a common assumption used by explainable AI (XAI) methods.

Common approaches to XAI for deep learning (DL) -based image classification focus on analyzing the importance of input features on the classification task in a given model: saliency methods like SHAP1 and GradCAM2 are used to measure the impact of spatial regions of the input image on the classification result. Combined with ground truth information about the location of the object in the input image, for example, a binary mask, it is determined whether object pixels had a high impact on the classification result, or whether the classification focused on background pixels. The former is considered to be a sign of a healthy classifier, whereas the latter is assumed to suggest overfitting on spurious correlations.

A major challenge, however, is that these intuitive interpretations are difficult to test quantitatively, and hence the output of such explanations lacks explanation itself. One particular reason is that correlations in real-world data are difficult to avoid, and whether they are spurious or legitimate is debatable. To shed light on this issue and test whether feature importance-based XAI reliably distinguishes between true learning and problematic overfitting, we utilize the task of traffic sign recognition. Based on the synthesis pipeline of the Synset Signset Germany dataset, which demonstrated comparability to real-world data, we show how systematically generated synthetic data can test assumptions about feature importance-based XAI and isolate factors between classification quality and XAI values.

Synset Background Effect Datasets

Therefore, we systematically generated six synthetic datasets for the task of traffic sign recognition, which differ only in their degree of camera variation and background correlation. Thereby, a correlated background means that each traffic sign is depicted in its most probable environment according to German traffic code / regulation StVO3 (Straßenverkehrs-Ordnung) categorized in urban, nature, and urban and nature. A traffic sign warning of wildlife crossing is, for example, likely to be set up on a rural road with natural background, while a sign warning of pedestrians is probable to be placed in an urban context. An uncorrelated background, however, means that the background is randomly chosen and thus not semantically linked to the depicted traffic sign class.

Datasets with uncorrelated background

Frontal camera perspective

Medium camera variation

High camera variation

Datasets with correlated background

Frontal camera perspective

Medium camera variation

High camera variation

Details

FieldTaskLicenseSamplesKey AnnotationsInstitutions
Computer Visiontraffic sign recognitionCreative Commons License
Creative Commons Attribution 4.0
90,200 images per dataset,
541,200 images in total
Per frame: Class (sign type), environment conditions (e.g., time of day, contrast), imaging artifacts (noise, motion blur, chromatic aberration), semantic segmentation, binary mask.Fraunhofer IOSB,
KIT-IES
Key properties of the dataset.

More examples for variations and features (expand)

Traffic sign selection (expand)

The Synset Background Effect datasets contain a total of 82 traffic sign classes. We selected the included classes with great care, as we aimed for some properties to be evenly distributed across the dataset. This comprises the traffic sign shapes. The datasets include 25 circular, triangular, and rectangular traffic signs each. Furthermore, seven traffic signs of various shapes were added.

circular

triangular

rectangular

various

Almost the same number of traffic signs to be most probable in an urban and natural environment are included in the datasets. Additionally, some traffic signs are likely to appear in urban as well as natural environments. For all classes of traffic sign shapes as well as probable environments, we aimed to distribute the appearing colors evenly when possible, to prevent trained networks from overfitting on color details.

urban

nature

urban and nature

For all traffic sign shapes, we included traffic sign classes that are likely to be confused with each other. This applies, e.g., to classes that only differ in vertical mirroring or local details.

The first 43 classes aim to represent a “synthetic twin” of the well-known “German Traffic Sign Recognition Benchmark“ (GTSRB)1 dataset. Their IDs directly match the traffic sign IDs of GTSRB.

1 J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German traffic sign recognition benchmark: a multi-class classification competition,”
in The 2011 international joint conference on neural networks. IEEE, 2011, pp. 1453–1460.

IDNameImage
0Zulässige Höchstgeschwindigkeit 20
1Zulässige Höchstgeschwindigkeit 30
2Zulässige Höchstgeschwindigkeit 50
3Zulässige Höchstgeschwindigkeit 60
4Zulässige Höchstgeschwindigkeit 70
5Zulässige Höchstgeschwindigkeit 80
6Ende der zulässigen Höchst­geschwindigkeit 80
7Zulässige Höchstgeschwindigkeit 100
8Zulässige Höchstgeschwindigkeit 120
9Überholverbot für Kraftfahrzeuge aller Art
10Überholverbot für Kraftfahrzeuge über 3,5 t
11Vorfahrt
12Vorfahrtstraße
13Vorfahrt gewähren
14Halt. Vorfahrt gewähren
15Verbot für Fahrzeuge aller Art
16Verbot für Kraftfahr­zeuge über 3,5 t
17Verbot der Einfahrt
18Gefahrenstelle
19Kurve – links
20Kurve – rechts
21Doppelkurve – zunächst links
22Unebene Fahrbahn
23Schleuder- oder Rutschgefahr
24Einseitig verengte Fahrbahn – Verengung rechts
25Arbeitsstelle
26Lichtzeichenanlage
27Fußgänger – Aufstellung rechts
IDNameImage
28Kinder – Aufstellung rechts
29Radverkehr – Aufstellung rechts
30Schnee- oder Eisglätte
31Wildwechsel – Aufstellung rechts
32Ende sämtlicher streckenbezogener Geschwindigkeitsbeschränkungen und Überholverbote
33Vorgeschriebene Fahrtrichtung – rechts
34Vorgeschriebene Fahrtrichtung – links
35Vorgeschriebene Fahrtrichtung – geradeaus
36Vorgeschriebene Fahrtrichtung – geradeaus oder rechts
37Vorgeschriebene Fahrtrichtung – geradeaus oder links
38Vorgeschriebene Vorbeifahrt – rechts vorbei
39Vorgeschriebene Vorbeifahrt – links vorbei
40Kreisverkehr
41Ende des Überholverbotes für Kraftfahrzeuge aller Art
42Ende des Überholverbotes für Kraftfahrzeuge über 3,5 t
43Fußgänger – Aufstellung links
44Kinder – Aufstellung links
45Wildwechsel – Aufstellung links
46Verengte Fahrbahn
47Einseitig verengte Fahrbahn – Verengung links
48Viehtrieb – Aufstellung rechts
49Steinschlag – Aufstellung rechts
50Splitt, Schotter
51Kreuzung oder Einmündung
52Stau
53Beginn einer Fußgängerzone
54Ende einer Fußgängerzone
IDNameImage
55Ende einer Tempo 20-Zone in verkehrsberuhigten Geschäftsbereichen
56Ende der Vorfahrtstraße
57Vorrang vor dem Gegenverkehr
58Beginn eines verkehrsberuhigten Bereichs
59Tunnel
60Autobahn
61Kraftfahrstraße
62Sackgasse
63Umleitungs­wegweiser, linksweisend
64Ende der Umleitungsankündigung
65Richtungstafel in Kurven (Aufstellung rechts)
66Richtungstafel in Kurven (Aufstellung links)
67Beginn einer Fahrradzone
68Ende einer Fahrradzone
69Mehrfach­besetzte Personen­kraftwagen frei
70Bei Nässe
71Verlauf der Vorfahrt­straße an Kreuzungen von oben nach links
72Verlauf der Vorfahrt­straße an Kreuzungen von oben nach rechts
73Verlauf der Vorfahrt­straße von unten nach links, Einmündung von rechts
74Verlauf der Vorfahrt­straße von unten nach rechts, Einmündung von links
75Beginn eines eingeschränkten Haltverbotes für eine Zone
76Ende eines eingeschränkten Haltverbotes für eine Zone
77Parken
78Andreaskreuz
79Fernsprecher
80Tankstelle
81Ladestation für Elektrofahrzeuge

Environment selection (expand)

All HDRIs used by the rendering pipeline for lighting and background modulation stem from Polyhaven1. Both sets of natural and urban environment maps contain 70 maps each; their names are given in the following tabulars.

1 Poly Haven

Nature

Abandoned PathwayGoegap RoadRustig Koppie
ArboretumGreenwich Park 03Schachen Forest
Autumn FieldIndustrial Sunset 02Signal Hill Dawn
Autumn Forest 01Je Gray 02Signal Hill Sunrise
Autumn MeadowLakesSimons Town Road
Autumn RoadLeibstadtSmall Rural Road
Beach ParkingLiliensteinSmall Rural Road 02
BismarckturmMealie RoadStraw Rolls Field 01
Cedar BridgeNarrow Moonlit RoadStreet Lamp
Chapmans DriveNear The River 02Sunflowers
Clarens MiddayNiederwihl ForestSunny Vondelpark
CliffsideOrbitaTief Etz
CrosswalkOstrich RoadTiergarten
Derelict Highway MiddayPark ParkingTurning Area
Derelict Highway NoonPink SunriseVersveldpas
Derelict OverpassRed Hill CloudyVictoria Curve 01
Dikhololo NightRed Hill CurveVictoria Curve 02
Dry Orchard MeadowRed Hill StraightVictoria Sunset
EtzwihlRogland Clear NightWaterbuck Trail
Evening FieldRosendal Plains 2Wide Street 02
Evening Road 01RuckenkreuzWinter River
Flower RoadRural Asphalt RoadWoods
Fouriesburg Mountain CloudyRural Winter RoadsideYellow Field
Glencairn Expressway

Urban

BelvedereNeuer ZollhofStuttgart Suburbs
Bethnal Green EntranceNight BridgeSt Peters Square Night
Blaubeuren Church SquareOld Apartments WalkwaySuburban Parking Area
BuikslotermeerpleinOutdoor UmbrellasSunset Jhbcentral
CambridgePalermo SidewalkTears Of Steel Bridge
Canary WharfPalermo SquareTeatro Massimo
Cloudy Cliffside RoadParking GarageTeufelsberg Ground 2
Cobblestone Street NightPaul Lobe HausUlmer Muenster
Construction YardPiazza BologniUrban Alley 01
CourtyardPiazza San MarcoUrban Courtyard
Courtyard NightPortland Landing PadUrban Courtyard 02
Dresden SquarePotsdamer PlatzUrban Street 01
Dusseldorf BridgeQuattro CantiUrban Street 02
Future ParkingRathausUrban Street 03
Golden BayRed WallUrban Street 04
Hamburg CanalResidential GardenVatican Road
HansaplatzRotes RathausVenetian Crossroads
KonigsalleeSan Giuseppe BridgeVenice Dawn 2
KonzerthausSchadowplatzVenice Sunrise
Leadenhall MarketShanghai BundVignaioli
LimehouseSkylit GarageVignaioli Night
Modern BuildingsSpree BankWide Street 01
Modern Buildings 2Stone Alley 03Zwinger Night
Modern Buildings Night

Metadata and label details (expand)

Mask images

The mask images mark all image areas showing the depicted traffic sign. They are given as binary png images containing only black and white pixels.

ClassRGBHex
Background000#000000
Foreground traffic sign shape255255255#ffffff

OGRE3D images

Semantic label images

Mask images

Semantic label images

The label images mark the different areas of the traffic sign itself, which enables to reconstruct the clean traffic sign and furthermore the sky, the traffic sign pole, other traffic signs, and tree parts that protrude into the picture. The labels are assigned as follows:

ClassRGBHex
Black areas of the traffic sign505050#323232
White areas of the traffic sign255255255#ffffff
Red areas of the traffic sign175075#af004b
Orange areas of the traffic sign22512525#e17d19
Yellow areas of the traffic sign20020075#c8c84b
Blue areas of the traffic sign0100125#00647d
Green areas of the traffic sign25150125#19967d
Tree50200158#32C89E
Sky150200200#96c8c8
Traffic sign pole1252575#7d194b
Label Mapping

JSON files

For each image the Synset Background Effect datasets contain a json file with the corresponding metadata. The json files include:

namerangeexampledescription
dataset“Synset Signset – Effect of Background – “ x [“Train”, “Test”] x [“Correlated”, “Uncorrelated”] x [“Frontal”, “Medium”, “High”] Synset Signset – Effect of Background – Test Correlated HighIdentifier of the (sub-)datasets.
image.baseID[0, …, 599]349Image’s base ID. Is between 0 and 499 (train datasets) / 599 (test datasets).
image.pathrelative file path11_Vorfahrt/9_img.pngRelative path to the image to which the json file refers.
image.width[100, …, 499]208Width of the corresponding image.
image.height[100, …, 499]208Height of the corresponding image.
geometry.renderingEngineOCTAS/OGRE3DOCTANE/OGRE3DFor all images of these datasets the OGRE3D render enigen (rasterization) was used.
geometry.trafficSignClass[0, …, 81]
one of the 82 traffic sign classes
17Defines the depicted traffic sign’s class as id. All available IDs can be looked up in the previous section “Traffic sign selection”.
geometry.upperSignNoneNoneTraffic signs don’t have additional upper signs in these datasets.
geometry.lowerSignNoneNoneTraffic signs don’t have additional lower signs in these datasets.
environment.nameSee previous section “Environment selection”Skylit GarageName of the used Polyhaven environment map. In total, 140 different environment maps where used for the dataset generation (see previous section).
environment.dayTimeMorningAfternoon, SunriseSunset, Midday, Night, ‘NotSpecifiedMiddayDepicted time of day.
environment.basicLocationIndoor, OutdoorOutdoorDepicted basic location.
environment.detailedLocationUrban, Suburban, Road, NatureSuburbanDepicted detailed location.
environment.weatherClear, Overcast, PartlyCloudy, NotSpecifiedPartlyCloudyBasic weather information.
environment.contrastLowContrast, MediumContrast, HighContrastHighContrastSpecified environment contrast.
environment.lightNatural, Artificial, NotSpecifiedNaturalDepicted light type. Indoor and night environments are typicalle illuminated by artificial light.
environment.seasonAutumn, Winter, NotSpecifiedSummerDepicted season. Unfortunately, this information is not available for some of the environment maps.
imageEffects.chromaticAberration.angle[0.0, 2·pi)1.1600300557619123Used angle for chromatic aberration given in radian.
imageEffects.chromaticAberration.pixels[0.0, 10.0]7.182089257049161Applied width of chromatic aberration in pixel.
imageEffects.motionBlur.angle[0.0, 2·pi)4.267329531389686Used angle for motion blur given in radian.
imageEffects.motionBlur.pixels[0.0, 12.0]2.2224869943608034Applied width of motion blur in pixel.
imageEffects.globalBlurStdDev0.40.4Gaussian kernel standard deviation of overall blur added to image.
imageEffects.relativeNoiseLevel[0.0, 0.016]0.014196181325255804Scales the relative noise.
imageEffects.additiveNoiseLevel[0.0, 0.002]0.0014961350727862753Scales the additive noise.
imageEffects.aecError[-0.14, 0.14]-0.018839826406741075Automatic exposure correction error.
imageEffects.whitePointAccuracy0.10.1Accuracy of the white balance (0 = no correction, 1 = gray world).
imageEffects.flarestrue or falsefalseSpecifies whether lense flares where simulated or not.
imageEffects.digitalImageSharpening.sigma1.51.5Gaussian kernel standard deviation applied to receive the blured image for unsharp masking.
imageEffects.digitalImageSharpening.strength2.02.0Amount of unsharp masking.
imageEffects.digitalImageSharpening.threshold0.020.02Threshold from which difference between image and blur image the image is digitally sharpened.
imageEffects.bayerPatterntrue or falsetrueSpecifies whether bayer pattern artifacts where simulated or not.

Paper and reference

Creative Commons License This work is licensed under Creative Commons Attribution 4.0.

To cite this work in your scientific publication, please use the following bibliography entry:

Sielemann, A., Barner, V., Wolf, S., Roschani, M., Ziehn, J., and Beyerer, J. (2025). Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception. In 2025 IEEE International Automated Vehicle Validation Conference (IAVVC).

@inproceedings{measuring_effect_of_background_sielemann_2025,
  title={{Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception}},
  author={Sielemann, Anne and Barner, Valentin and Wolf, Stefan and Roschani, Masoud and Ziehn, Jens and Beyerer, Juergen},
  booktitle={2025 IEEE International Automated Vehicle Validation Conference (IAVVC)},
  year={2025}
}

In case of copying and redistributing, or publishing an adapted version of our datasets, please provide the name of our dataset, the creator names, a copyright notice, a link to this website, a license notice with link to the license, and, if changes were made, a disclaimer notice, and a short description of the applied changes. For example, as follows:

This work is based on the Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception
by Anne Sielemann, Valentin Barner, Stefan Wolf, Masoud Roschani, Jens Ziehn, and Juergen Beyerer,
© 2025 Fraunhofer IOSB, All rights reserved.
Link: synset.de/datasets/synset-signset-ger/background-effect/
Licence: CC BY 4.0
Disclaimer: The original authors are neither affiliated nor responsible for any applied changes.

Download Dataset    Download Paper for Personal Use

Credits

This work was supported by the Fraunhofer Internal Programs under Grant No. PREPARE 40-02702 within the “ML4Safety” project, as well as funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) within the program “New Vehicle and System Technologies” as part of the AVEAS research project. The real-world data of worn / dirty traffic signs, used to train the GAN for texture synthesis, was acquired with the kind support of the civil engineering department of the city of Karlsruhe, Germany (Tiefbauamt Karlsruhe).

  1. S. Lundberg, “A unified approach to interpreting model predictions,” arXiv preprint arXiv:1705.07874, 2017. ↩︎
  2. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626. ↩︎
  3. Verkehrszeichen Wissensnetz – stvo2Go ↩︎